02版:特刊
PDF版下载   
2020年03月17日

科普知识篇

人工智能与医疗器械软件

中国医药报 02版特刊
2020年03月17日

□ 彭亮

人工智能于1956年被正式提出,至今尚无公认的完备定义,学术界通常认为人工智能是通过感知周围环境做出合理行动以达到预期目标的计算机软件或系统。

人工智能从能力上可分为弱人工智能和强人工智能。弱人工智能适用于专业领域,目前强于人类的能力。强人工智能适用于通用领域,目前远弱于人类的能力。目前我们还处于弱人工智能时代。

人工智能发展驱动因素包括算法、算力(即计算资源)、数据/知识,即人工智能是基于数据/知识和算力的算法。算法是人工智能的核心,算力是人工智能的基础,数据/知识是人工智能训练学习的原料,三者缺一不可。

人工智能发展过程较为曲折,三起两落,第三次热潮始于2012年,与以往不同,本次热潮主要由产业界而非学术界所推动。本次热潮以深度学习为基础算法,主要得益于算力的大幅提升和数据的海量积累。

机器学习

机器学习是人工智能的核心领域,专门研究计算机模拟人类学习行为的方法。机器学习主要有五个学派:符号学派,以逆向演绎算法为代表;联结学派,以人工神经网络算法为代表;进化学派,以遗传算法为代表;统计学派,以贝叶斯概率算法为代表;类推学派,以支持向量机算法为代表。

机器学习从学习方式上可分为有监督学习、半监督学习、无监督学习。有监督学习需要专家先对原始数据进行标注,再基于标注数据进行机器训练,训练结束后投入使用。无监督学习无需专家进行数据标注,直接使用原始数据进行机器训练。半监督学习介于有监督学习、无监督学习之间,部分原始数据进行专家标注,其他原始数据不进行专家标注。

深度学习

深度学习于2006年被正式提出,是新一代人工智能技术的代表技术,为人工神经网络算法,即机器学习的子集。深度学习旨在模拟人脑进行分析学习的神经网络,通过模仿人脑的机制来解释数据。

从发展驱动因素角度考虑,深度学习是基于海量数据和高算力的“端到端”黑盒算法。深度学习需要海量高质量的训练数据以及高性能计算资源,同时,输出与输入缺乏因果关系,知其然但不知其所以然,可解释性差,这是制约深度学习发展的最主要因素。

医疗器械软件

医疗器械软件包括独立软件和软件组件两类。其中,独立软件是指具有一个或多个医疗目的,无需医疗器械硬件即可完成自身预期目的,运行于通

用计算平台的软件。软件组件是指具有一个或多个医疗目的,控制、驱动医疗器械硬件或运行于医用计算平台的软件。简单来说,独立软件是指本身即为医疗器械的软件,需要单独注册申报;而软件组件是指医疗器械内含的软件,需要随医疗器械产品进行注册申报。

现行《医疗器械分类目录》第21部分将独立软件分为六大类,包括治疗计划软件、影像处理软件、数据处理软件、决策支持软件、体外诊断软件、康复训练软件。其中治疗计划软件可以帮助医务人员制定手术计划、放射治疗计划;影像和数据处理软件可以帮助医务人员处理医学影像(如X射线、CT、MRI、核医学、超声、光学等图像和影像)和医学数据(如心电、脑电、血压、血氧等生理参数);决策支持软件采用人工智能技术辅助医务人员进行医疗决策;体外诊断软件可以帮助医务人员分析病理图像、临床检验数据;康复训练软件可以借助计算机显示器辅助弱视儿童进行视觉功能训练。

随着软件技术的发展,绝大多数医用电气设备均含有软件组件。大到CT设备、MRI设备、核医学设备、放射治疗设备等产品,小到心电图机、血压仪、血糖仪等产品,均含有软件组件以实现数据采集、运行控制等功能。

人工智能医疗器械

工智能医疗器械是指采用人工智能技术的医疗器械。由于软件的本质是算法及其实现,人工智能是一种算法,因此软件都可以使用人工智能技术。也就是说,人工智能医疗器械从软件角度可以分为人工智能独立软件和人工智能软件组件。(作者单位:国家药品监督管理局医疗器械技术审评中心)

分享按钮